Bland AI

Send or receive millions of phone calls per day, using programmable voice agents that sound and feel human.

Integrate the Bland AI API with the Go API

Setup the Bland AI API trigger to run a workflow which integrates with the Go API. Pipedream's integration platform allows you to integrate Bland AI and Go remarkably fast. Free for developers.

Analyze Call with the Bland AI API

Analyzes an input call, extracting structured data and providing insights. See the documentation

 
Try it
Run Go Code with the Go API

Run any Go code and use any Go package available with a simple import. Refer to the Pipedream Go docs to learn more.

 
Try it
End Call with the Bland AI API

Terminates a currently ongoing call using Bland AI. See the documentation

 
Try it
Get Transcript with the Bland AI API

Retrieves the transcript of a specified call post-completion. See the documentation

 
Try it

Overview of Bland AI

The Bland AI API offers a suite of artificial intelligence services, which, when integrated with Pipedream, can automate tasks, analyze data, and enhance applications with machine learning capabilities. Through Pipedream's serverless platform, you can connect Bland AI with various apps to create custom workflows, process data, and respond to events in real time without managing infrastructure.

Connect Bland AI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import { axios } from "@pipedream/platform"
export default defineComponent({
  props: {
    bland_ai: {
      type: "app",
      app: "bland_ai",
    }
  },
  async run({steps, $}) {
    return await axios($, {
      url: `https://api.bland.ai/v1/calls`,
      headers: {
        "Authorization": `${this.bland_ai.$auth.api_key}`,
      },
    })
  },
})

Connect Go

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package main

import (
	"fmt"

	pd "github.com/PipedreamHQ/pipedream-go"
)

func main() {
	// Access previous step data using pd.Steps
	fmt.Println(pd.Steps)

	// Export data using pd.Export
	data := make(map[string]interface{})
	data["name"] = "Luke"
	pd.Export("data", data)
}