with Tutor LMS and Google Gemini?
Generates content from text input using the Google Gemini API. See the documentation
Generates content from both text and image input using the Gemini API. See the documentation
Generate embeddings from text input using Google Gemini. See the documentation
The Tutor LMS API provides hooks into the Tutor LMS ecosystem, enabling you to automate actions and manage data around courses, lessons, quizzes, and results within the learning management system. With Pipedream, you can build workflows that react to events in Tutor LMS, such as new course enrollments, or that push data to Tutor LMS to create or update resources. Utilizing Pipedream's ability to connect to multiple services, you can synchronize Tutor LMS data with other apps, trigger notifications, and streamline administrative tasks.
import { axios } from "@pipedream/platform"
export default defineComponent({
props: {
tutor_lms: {
type: "app",
app: "tutor_lms",
}
},
async run({steps, $}) {
return await axios($, {
url: `http://${this.tutor_lms.$auth.url}/wp-json/tutor/v1/courses`,
})
},
})
The Google Gemini API is a cutting-edge tool from Google that enables developers to leverage AI models like Imagen and MusicLM to create and manipulate images and music based on textual descriptions. With Pipedream, you can harness this API to automate workflows that integrate AI-generated content into a variety of applications, from generating visuals for social media posts to composing background music for videos. Pipedream's serverless platform allows you to connect Google Gemini API with other apps to create complex, event-driven workflows without managing infrastructure.
import { axios } from "@pipedream/platform"
export default defineComponent({
props: {
google_gemini: {
type: "app",
app: "google_gemini",
}
},
async run({steps, $}) {
const data = `{{your_promptt}}`;
//E.g. {"contents":[{"parts":[{"text":"Write a story about a magic backpack"}]}]}
return await axios($, {
method: "POST",
url: `https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent`,
headers: {
"Content-Type": "application/json",
},
params: {
key: `${this.google_gemini.$auth.api_key}`,
},
data
})
},
})