with Plaid and Google Cloud Document AI?
Emit new event when there are new accounts available at the Financial Institution. See the documentation
Emit new event when there are changes to Plaid Items or the status of asynchronous processes. See the documentation
Emit new event when there are new updates available for a connected account. See the documentation
Exchange a Link public_token
for an API access_token
. See the documentation
Creates a valid public_token
for an arbitrary institution ID, initial products, and test credentials. See the documentation
Creates a user ID and token to be used with Plaid Check, Income, or Multi-Item Link flow. See the documentation
Get the real-time balance for each of an Item's accounts. See the documentation
Retrieves user-authorized transaction data for a specified date range. See the documentation
The Plaid API offers a multitude of financial data operations, enabling developers to manage and interact with user bank accounts, transactions, identity info, and more, all within a secure and compliant ecosystem. Integrating Plaid with Pipedream can unlock powerful automations, like syncing transaction data to accounting software, verifying user identities for KYC compliance, and automating financial alerts or reporting.
module.exports = defineComponent({
props: {
plaid: {
type: "app",
app: "plaid",
}
},
async run({steps, $}) {
const { Configuration, PlaidApi } = require('plaid');
const client = new PlaidApi(
new Configuration({
basePath: this.plaid.$auth.environment,
baseOptions: {
headers: {
'PLAID-CLIENT-ID': this.plaid.$auth.client_id,
'PLAID-SECRET': this.plaid.$auth.client_secret,
},
},
})
);
// Test request
const request = {
count: 10,
offset: 0,
country_codes: ['US'],
};
const response = await client.institutionsGet(request);
return response.data.institutions;
},
})
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';
export default defineComponent({
props: {
google_cloud_document_ai: {
type: "app",
app: "google_cloud_document_ai",
}
},
async run({ steps, $ }) {
//Sample pdf file to process by Google Document AI API
const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
const filePath = join('/tmp', 'my_document.pdf');
const downloadFile = async () => {
const res = await new Promise((resolve) => get(url, resolve));
const chunks = [];
for await (const chunk of res) {
chunks.push(chunk);
}
await writeFile(filePath, Buffer.concat(chunks));
console.log(`File downloaded successfully to ${filePath}`);
};
await downloadFile();
const projectId = this.google_cloud_document_ai.$auth.project_id;
const location = this.google_cloud_document_ai.$auth.location;
const processorId = this.google_cloud_document_ai.$auth.processor_id;
// Instantiates a client
// apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
// const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
const client = new DocumentProcessorServiceClient();
async function testRequest() {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;
// Read the file into memory.
const imageFile = await fs.readFile(filePath);
// Convert the image data to a Buffer and base64 encode it.
const encodedImage = Buffer.from(imageFile).toString('base64');
const request = {
name,
rawDocument: {
content: encodedImage,
mimeType: 'application/pdf',
},
};
// Recognizes text entities in the PDF document
const [result] = await client.processDocument(request);
const { document } = result;
// Get all of the document text as one big string
const { text } = document;
// Extract shards from the text field
const getText = textAnchor => {
if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
return '';
}
// First shard in document doesn't have startIndex property
const startIndex = textAnchor.textSegments[0].startIndex || 0;
const endIndex = textAnchor.textSegments[0].endIndex;
return text.substring(startIndex, endIndex);
};
// Read the text recognition output from the processor
const [page1] = document.pages;
const { paragraphs } = page1;
let concatenatedText = "";
for (const paragraph of paragraphs) {
const paragraphText = getText(paragraph.layout.textAnchor);
concatenatedText += paragraphText;
}
return concatenatedText;
}
return await testRequest();
}
})