with Google Dialogflow and Google Cloud Document AI?
Batch create entities, See REST docs and client API docs
Creates an Entity Type, See REST docs and client API docs
Creates new agent, updates if already created See REST docs and client API
Google Dialogflow API empowers you to create conversational interfaces for websites, apps, and messaging platforms. Think chatbots that can engage in human-like dialogue, provide customer support, guide through sales processes, or control smart home devices with voice commands. With Pipedream's integration capabilities, you can create automated workflows that trigger actions in other apps based on Dialogflow's processed input, enabling seamless interaction across a plethora of services.
module.exports = defineComponent({
props: {
google_dialogflow: {
type: "app",
app: "google_dialogflow",
}
},
async run({steps, $}) {
// Example code from the Dialogflow Node.js library:
// https://github.com/googleapis/nodejs-dialogflow
const dialogflow = require('dialogflow')
const uuid = require('uuid')
// A unique identifier for the given session
const sessionId = uuid.v4()
const key = JSON.parse(this.google_dialogflow.$auth.key_json)
// Creates a session client from a Google service account key.
const sessionClient = new dialogflow.SessionsClient({
projectId: key.project_id,
credentials: {
client_email: key.client_email,
private_key: key.private_key,
}
})
const sessionPath = sessionClient.sessionPath(key.project_id, sessionId)
// The text query request.
const request = {
session: sessionPath,
queryInput: {
text: {
// The query to send to the dialogflow agent
text: 'hello',
// The language used by the client (en-US)
languageCode: 'en-US',
},
},
}
// Send request and log result
const responses = await sessionClient.detectIntent(request)
console.log('Detected intent')
const result = responses[0].queryResult
console.log(`Query: ${result.queryText}`)
console.log(`Response: ${result.fulfillmentText}`)
if (result.intent) {
console.log(`Intent: ${result.intent.displayName}`)
} else {
console.log(`No intent matched.`)
}
},
})
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';
export default defineComponent({
props: {
google_cloud_document_ai: {
type: "app",
app: "google_cloud_document_ai",
}
},
async run({ steps, $ }) {
//Sample pdf file to process by Google Document AI API
const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
const filePath = join('/tmp', 'my_document.pdf');
const downloadFile = async () => {
const res = await new Promise((resolve) => get(url, resolve));
const chunks = [];
for await (const chunk of res) {
chunks.push(chunk);
}
await writeFile(filePath, Buffer.concat(chunks));
console.log(`File downloaded successfully to ${filePath}`);
};
await downloadFile();
const projectId = this.google_cloud_document_ai.$auth.project_id;
const location = this.google_cloud_document_ai.$auth.location;
const processorId = this.google_cloud_document_ai.$auth.processor_id;
// Instantiates a client
// apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
// const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
const client = new DocumentProcessorServiceClient();
async function testRequest() {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;
// Read the file into memory.
const imageFile = await fs.readFile(filePath);
// Convert the image data to a Buffer and base64 encode it.
const encodedImage = Buffer.from(imageFile).toString('base64');
const request = {
name,
rawDocument: {
content: encodedImage,
mimeType: 'application/pdf',
},
};
// Recognizes text entities in the PDF document
const [result] = await client.processDocument(request);
const { document } = result;
// Get all of the document text as one big string
const { text } = document;
// Extract shards from the text field
const getText = textAnchor => {
if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
return '';
}
// First shard in document doesn't have startIndex property
const startIndex = textAnchor.textSegments[0].startIndex || 0;
const endIndex = textAnchor.textSegments[0].endIndex;
return text.substring(startIndex, endIndex);
};
// Read the text recognition output from the processor
const [page1] = document.pages;
const { paragraphs } = page1;
let concatenatedText = "";
for (const paragraph of paragraphs) {
const paragraphText = getText(paragraph.layout.textAnchor);
concatenatedText += paragraphText;
}
return concatenatedText;
}
return await testRequest();
}
})