What do you want to automate

with Google Cloud Document AI and Google Dialogflow?

Prompt, edit and deploy AI agents that connect to Google Cloud Document AI, Google Dialogflow and 2,500+ other apps in seconds.

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Create Context with the Google Dialogflow API

Creates a context, See REST docs and client API

 
Try it
Create Entities with the Google Dialogflow API

Batch create entities, See REST docs and client API docs

 
Try it
Create Entity Type with the Google Dialogflow API

Creates an Entity Type, See REST docs and client API docs

 
Try it
Create Intent with the Google Dialogflow API

Creates an intent, See REST docs and client API

 
Try it
Create or Update Agent with the Google Dialogflow API

Creates new agent, updates if already created See REST docs and client API

 
Try it
Integrate the Google Cloud Document AI API with the Google Dialogflow API
Setup the Google Cloud Document AI API trigger to run a workflow which integrates with the Google Dialogflow API. Pipedream's integration platform allows you to integrate Google Cloud Document AI and Google Dialogflow remarkably fast. Free for developers.

Connect Google Cloud Document AI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';

export default defineComponent({
  props: {
    google_cloud_document_ai: {
      type: "app",
      app: "google_cloud_document_ai",
    }
  },
  async run({ steps, $ }) {
    //Sample pdf file to process by Google Document AI API
    const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
    const filePath = join('/tmp', 'my_document.pdf');

    const downloadFile = async () => {
      const res = await new Promise((resolve) => get(url, resolve));
      const chunks = [];

      for await (const chunk of res) {
        chunks.push(chunk);
      }

      await writeFile(filePath, Buffer.concat(chunks));
      console.log(`File downloaded successfully to ${filePath}`);
    };

    await downloadFile();

    const projectId = this.google_cloud_document_ai.$auth.project_id;
    const location = this.google_cloud_document_ai.$auth.location;
    const processorId = this.google_cloud_document_ai.$auth.processor_id;

    // Instantiates a client
    // apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
    // const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
    const client = new DocumentProcessorServiceClient();

    async function testRequest() {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

      // Read the file into memory.		
      const imageFile = await fs.readFile(filePath);

      // Convert the image data to a Buffer and base64 encode it.
      const encodedImage = Buffer.from(imageFile).toString('base64');

      const request = {
        name,
        rawDocument: {
          content: encodedImage,
          mimeType: 'application/pdf',
        },
      };

      // Recognizes text entities in the PDF document
      const [result] = await client.processDocument(request);
      const { document } = result;

      // Get all of the document text as one big string
      const { text } = document;

      // Extract shards from the text field
      const getText = textAnchor => {
        if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
          return '';
        }

        // First shard in document doesn't have startIndex property
        const startIndex = textAnchor.textSegments[0].startIndex || 0;
        const endIndex = textAnchor.textSegments[0].endIndex;

        return text.substring(startIndex, endIndex);
      };

      // Read the text recognition output from the processor
      const [page1] = document.pages;
      const { paragraphs } = page1;
      let concatenatedText = "";
      for (const paragraph of paragraphs) {
        const paragraphText = getText(paragraph.layout.textAnchor);
        concatenatedText += paragraphText;
      }
      return concatenatedText;
    }

    return await testRequest();
  }
})

Overview of Google Dialogflow

Google Dialogflow API empowers you to create conversational interfaces for websites, apps, and messaging platforms. Think chatbots that can engage in human-like dialogue, provide customer support, guide through sales processes, or control smart home devices with voice commands. With Pipedream's integration capabilities, you can create automated workflows that trigger actions in other apps based on Dialogflow's processed input, enabling seamless interaction across a plethora of services.

Connect Google Dialogflow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
module.exports = defineComponent({
  props: {
    google_dialogflow: {
      type: "app",
      app: "google_dialogflow",
    }
  },
  async run({steps, $}) {
    // Example code from the Dialogflow Node.js library:
    // https://github.com/googleapis/nodejs-dialogflow
    const dialogflow = require('dialogflow')
    const uuid = require('uuid')
    
    // A unique identifier for the given session
    const sessionId = uuid.v4()
    
    const key = JSON.parse(this.google_dialogflow.$auth.key_json)
     
    // Creates a session client from a Google service account key.
    const sessionClient = new dialogflow.SessionsClient({
      projectId: key.project_id,
      credentials: {
        client_email: key.client_email,
        private_key: key.private_key,
      }
    })
    const sessionPath = sessionClient.sessionPath(key.project_id, sessionId)
    
    // The text query request.
    const request = {
      session: sessionPath,
      queryInput: {
        text: {
          // The query to send to the dialogflow agent
          text: 'hello',
          // The language used by the client (en-US)
          languageCode: 'en-US',
        },
      },
    }
    
    // Send request and log result
    const responses = await sessionClient.detectIntent(request)
    console.log('Detected intent')
    const result = responses[0].queryResult
    console.log(`Query: ${result.queryText}`)
    console.log(`Response: ${result.fulfillmentText}`)
    if (result.intent) {
      console.log(`Intent: ${result.intent.displayName}`)
    } else {
      console.log(`No intent matched.`)
    }
  },
})

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo