with Google Cloud Document AI and Damstra Forms?
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';
export default defineComponent({
props: {
google_cloud_document_ai: {
type: "app",
app: "google_cloud_document_ai",
}
},
async run({ steps, $ }) {
//Sample pdf file to process by Google Document AI API
const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
const filePath = join('/tmp', 'my_document.pdf');
const downloadFile = async () => {
const res = await new Promise((resolve) => get(url, resolve));
const chunks = [];
for await (const chunk of res) {
chunks.push(chunk);
}
await writeFile(filePath, Buffer.concat(chunks));
console.log(`File downloaded successfully to ${filePath}`);
};
await downloadFile();
const projectId = this.google_cloud_document_ai.$auth.project_id;
const location = this.google_cloud_document_ai.$auth.location;
const processorId = this.google_cloud_document_ai.$auth.processor_id;
// Instantiates a client
// apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
// const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
const client = new DocumentProcessorServiceClient();
async function testRequest() {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;
// Read the file into memory.
const imageFile = await fs.readFile(filePath);
// Convert the image data to a Buffer and base64 encode it.
const encodedImage = Buffer.from(imageFile).toString('base64');
const request = {
name,
rawDocument: {
content: encodedImage,
mimeType: 'application/pdf',
},
};
// Recognizes text entities in the PDF document
const [result] = await client.processDocument(request);
const { document } = result;
// Get all of the document text as one big string
const { text } = document;
// Extract shards from the text field
const getText = textAnchor => {
if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
return '';
}
// First shard in document doesn't have startIndex property
const startIndex = textAnchor.textSegments[0].startIndex || 0;
const endIndex = textAnchor.textSegments[0].endIndex;
return text.substring(startIndex, endIndex);
};
// Read the text recognition output from the processor
const [page1] = document.pages;
const { paragraphs } = page1;
let concatenatedText = "";
for (const paragraph of paragraphs) {
const paragraphText = getText(paragraph.layout.textAnchor);
concatenatedText += paragraphText;
}
return concatenatedText;
}
return await testRequest();
}
})
The Damstra Forms API provides a digital solution for creating, managing, and submitting forms vital to workplace safety and compliance. By integrating this API with Pipedream, you can automate form-related workflows to efficiently handle data collection, processing, and analysis. Use cases include automatically triggering actions upon form submission, syncing form data to other business systems, and monitoring submissions for compliance.
import { axios } from "@pipedream/platform"
export default defineComponent({
props: {
damstra_forms: {
type: "app",
app: "damstra_forms",
}
},
async run({steps, $}) {
return await axios($, {
url: `https://${this.damstra_forms.$auth.domain}.au.damstraforms.com/public_api/v2/projects`,
headers: {
"Authorization": `Token token=${this.damstra_forms.$auth.api_key}`,
"Accept": `application/json`,
},
})
},
})