What do you want to automate

with File Store and Google Cloud Document AI?

Prompt, edit and deploy AI agents that connect to File Store, Google Cloud Document AI and 2,500+ other apps in seconds.

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Integrate the File Store API with the Google Cloud Document AI API
Setup the File Store API trigger to run a workflow which integrates with the Google Cloud Document AI API. Pipedream's integration platform allows you to integrate File Store and Google Cloud Document AI remarkably fast. Free for developers.

Connect File Store

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
export default defineComponent({
  async run({ steps, $ }) {
    // list all contents of the root File Stores directory in this project
    const dirs = $.files.dir();
    let files = [];

    for await(const dir of dirs) {
      // if this is a file, let's open it
      if(dir.isFile()) {
        files.push(await $.files.open(dir.path))
      }
    }

    return files
  },
})

Connect Google Cloud Document AI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';

export default defineComponent({
  props: {
    google_cloud_document_ai: {
      type: "app",
      app: "google_cloud_document_ai",
    }
  },
  async run({ steps, $ }) {
    //Sample pdf file to process by Google Document AI API
    const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
    const filePath = join('/tmp', 'my_document.pdf');

    const downloadFile = async () => {
      const res = await new Promise((resolve) => get(url, resolve));
      const chunks = [];

      for await (const chunk of res) {
        chunks.push(chunk);
      }

      await writeFile(filePath, Buffer.concat(chunks));
      console.log(`File downloaded successfully to ${filePath}`);
    };

    await downloadFile();

    const projectId = this.google_cloud_document_ai.$auth.project_id;
    const location = this.google_cloud_document_ai.$auth.location;
    const processorId = this.google_cloud_document_ai.$auth.processor_id;

    // Instantiates a client
    // apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
    // const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
    const client = new DocumentProcessorServiceClient();

    async function testRequest() {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

      // Read the file into memory.		
      const imageFile = await fs.readFile(filePath);

      // Convert the image data to a Buffer and base64 encode it.
      const encodedImage = Buffer.from(imageFile).toString('base64');

      const request = {
        name,
        rawDocument: {
          content: encodedImage,
          mimeType: 'application/pdf',
        },
      };

      // Recognizes text entities in the PDF document
      const [result] = await client.processDocument(request);
      const { document } = result;

      // Get all of the document text as one big string
      const { text } = document;

      // Extract shards from the text field
      const getText = textAnchor => {
        if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
          return '';
        }

        // First shard in document doesn't have startIndex property
        const startIndex = textAnchor.textSegments[0].startIndex || 0;
        const endIndex = textAnchor.textSegments[0].endIndex;

        return text.substring(startIndex, endIndex);
      };

      // Read the text recognition output from the processor
      const [page1] = document.pages;
      const { paragraphs } = page1;
      let concatenatedText = "";
      for (const paragraph of paragraphs) {
        const paragraphText = getText(paragraph.layout.textAnchor);
        concatenatedText += paragraphText;
      }
      return concatenatedText;
    }

    return await testRequest();
  }
})

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo