What do you want to automate

with Google Cloud Document AI and Python?

Prompt, edit and deploy AI agents that connect to Google Cloud Document AI, Python and 2,500+ other apps in seconds.

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Run Python Code with the Python API

Write Python and use any of the 350k+ PyPi packages available. Refer to the Pipedream Python docs to learn more.

 
Try it
Integrate the Google Cloud Document AI API with the Python API
Setup the Google Cloud Document AI API trigger to run a workflow which integrates with the Python API. Pipedream's integration platform allows you to integrate Google Cloud Document AI and Python remarkably fast. Free for developers.

Connect Google Cloud Document AI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import { DocumentProcessorServiceClient } from '@google-cloud/documentai/build/src/v1/index.js';
import { promises as fs } from 'fs';
import { get } from 'https';
import { writeFile } from 'fs/promises';
import { join } from 'path';

export default defineComponent({
  props: {
    google_cloud_document_ai: {
      type: "app",
      app: "google_cloud_document_ai",
    }
  },
  async run({ steps, $ }) {
    //Sample pdf file to process by Google Document AI API
    const url = 'https://www.learningcontainer.com/wp-content/uploads/2019/09/sample-pdf-file.pdf';
    const filePath = join('/tmp', 'my_document.pdf');

    const downloadFile = async () => {
      const res = await new Promise((resolve) => get(url, resolve));
      const chunks = [];

      for await (const chunk of res) {
        chunks.push(chunk);
      }

      await writeFile(filePath, Buffer.concat(chunks));
      console.log(`File downloaded successfully to ${filePath}`);
    };

    await downloadFile();

    const projectId = this.google_cloud_document_ai.$auth.project_id;
    const location = this.google_cloud_document_ai.$auth.location;
    const processorId = this.google_cloud_document_ai.$auth.processor_id;

    // Instantiates a client
    // apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
    // const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
    const client = new DocumentProcessorServiceClient();

    async function testRequest() {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

      // Read the file into memory.		
      const imageFile = await fs.readFile(filePath);

      // Convert the image data to a Buffer and base64 encode it.
      const encodedImage = Buffer.from(imageFile).toString('base64');

      const request = {
        name,
        rawDocument: {
          content: encodedImage,
          mimeType: 'application/pdf',
        },
      };

      // Recognizes text entities in the PDF document
      const [result] = await client.processDocument(request);
      const { document } = result;

      // Get all of the document text as one big string
      const { text } = document;

      // Extract shards from the text field
      const getText = textAnchor => {
        if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
          return '';
        }

        // First shard in document doesn't have startIndex property
        const startIndex = textAnchor.textSegments[0].startIndex || 0;
        const endIndex = textAnchor.textSegments[0].endIndex;

        return text.substring(startIndex, endIndex);
      };

      // Read the text recognition output from the processor
      const [page1] = document.pages;
      const { paragraphs } = page1;
      let concatenatedText = "";
      for (const paragraph of paragraphs) {
        const paragraphText = getText(paragraph.layout.textAnchor);
        concatenatedText += paragraphText;
      }
      return concatenatedText;
    }

    return await testRequest();
  }
})

Overview of Python

Develop, run and deploy your Python code in Pipedream workflows. Integrate seamlessly between no-code steps, with connected accounts, or integrate Data Stores and manipulate files within a workflow

This includes installing PyPI packages, within your code without having to manage a requirements.txt file or running pip.

Below is an example of using Python to access data from the trigger of the workflow, and sharing it with subsequent workflow steps:

Connect Python

1
2
3
4
5
def handler(pd: "pipedream"):
  # Reference data from previous steps
  print(pd.steps["trigger"]["context"]["id"])
  # Return data for use in future steps
  return {"foo": {"test":True}}

Trusted by 1,000,000+ developers from startups to Fortune 500 companies

Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo
Adyen logo
Appcues logo
Bandwidth logo
Checkr logo
ChartMogul logo
Dataminr logo
Gopuff logo
Gorgias logo
LinkedIn logo
Logitech logo
Replicated logo
Rudderstack logo
SAS logo
Scale AI logo
Webflow logo
Warner Bros. logo